pattern.js 28.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
/* Copyright 2012 Mozilla Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
/* eslint-disable no-multi-spaces */

'use strict';

(function (root, factory) {
  if (typeof define === 'function' && define.amd) {
    define('pdfjs/core/pattern', ['exports', 'pdfjs/shared/util',
      'pdfjs/core/primitives', 'pdfjs/core/function',
      'pdfjs/core/colorspace'], factory);
  } else if (typeof exports !== 'undefined') {
    factory(exports, require('../shared/util.js'), require('./primitives.js'),
      require('./function.js'), require('./colorspace.js'));
  } else {
    factory((root.pdfjsCorePattern = {}), root.pdfjsSharedUtil,
      root.pdfjsCorePrimitives, root.pdfjsCoreFunction,
      root.pdfjsCoreColorSpace);
  }
}(this, function (exports, sharedUtil, corePrimitives, coreFunction,
                  coreColorSpace) {

var UNSUPPORTED_FEATURES = sharedUtil.UNSUPPORTED_FEATURES;
var MissingDataException = sharedUtil.MissingDataException;
var Util = sharedUtil.Util;
var assert = sharedUtil.assert;
var error = sharedUtil.error;
var info = sharedUtil.info;
var warn = sharedUtil.warn;
var isStream = corePrimitives.isStream;
var PDFFunction = coreFunction.PDFFunction;
var ColorSpace = coreColorSpace.ColorSpace;

var ShadingType = {
  FUNCTION_BASED: 1,
  AXIAL: 2,
  RADIAL: 3,
  FREE_FORM_MESH: 4,
  LATTICE_FORM_MESH: 5,
  COONS_PATCH_MESH: 6,
  TENSOR_PATCH_MESH: 7
};

var Pattern = (function PatternClosure() {
  // Constructor should define this.getPattern
  function Pattern() {
    error('should not call Pattern constructor');
  }

  Pattern.prototype = {
    // Input: current Canvas context
    // Output: the appropriate fillStyle or strokeStyle
    getPattern: function Pattern_getPattern(ctx) {
      error('Should not call Pattern.getStyle: ' + ctx);
    }
  };

  Pattern.parseShading = function Pattern_parseShading(shading, matrix, xref,
                                                       res, handler) {

    var dict = isStream(shading) ? shading.dict : shading;
    var type = dict.get('ShadingType');

    try {
      switch (type) {
        case ShadingType.AXIAL:
        case ShadingType.RADIAL:
          // Both radial and axial shadings are handled by RadialAxial shading.
          return new Shadings.RadialAxial(dict, matrix, xref, res);
        case ShadingType.FREE_FORM_MESH:
        case ShadingType.LATTICE_FORM_MESH:
        case ShadingType.COONS_PATCH_MESH:
        case ShadingType.TENSOR_PATCH_MESH:
          return new Shadings.Mesh(shading, matrix, xref, res);
        default:
          throw new Error('Unsupported ShadingType: ' + type);
      }
    } catch (ex) {
      if (ex instanceof MissingDataException) {
        throw ex;
      }
      handler.send('UnsupportedFeature',
                   {featureId: UNSUPPORTED_FEATURES.shadingPattern});
      warn(ex);
      return new Shadings.Dummy();
    }
  };
  return Pattern;
})();

var Shadings = {};

// A small number to offset the first/last color stops so we can insert ones to
// support extend. Number.MIN_VALUE is too small and breaks the extend.
Shadings.SMALL_NUMBER = 1e-6;

// Radial and axial shading have very similar implementations
// If needed, the implementations can be broken into two classes
Shadings.RadialAxial = (function RadialAxialClosure() {
  function RadialAxial(dict, matrix, xref, res) {
    this.matrix = matrix;
    this.coordsArr = dict.getArray('Coords');
    this.shadingType = dict.get('ShadingType');
    this.type = 'Pattern';
    var cs = dict.get('ColorSpace', 'CS');
    cs = ColorSpace.parse(cs, xref, res);
    this.cs = cs;

    var t0 = 0.0, t1 = 1.0;
    if (dict.has('Domain')) {
      var domainArr = dict.getArray('Domain');
      t0 = domainArr[0];
      t1 = domainArr[1];
    }

    var extendStart = false, extendEnd = false;
    if (dict.has('Extend')) {
      var extendArr = dict.getArray('Extend');
      extendStart = extendArr[0];
      extendEnd = extendArr[1];
    }

    if (this.shadingType === ShadingType.RADIAL &&
       (!extendStart || !extendEnd)) {
      // Radial gradient only currently works if either circle is fully within
      // the other circle.
      var x1 = this.coordsArr[0];
      var y1 = this.coordsArr[1];
      var r1 = this.coordsArr[2];
      var x2 = this.coordsArr[3];
      var y2 = this.coordsArr[4];
      var r2 = this.coordsArr[5];
      var distance = Math.sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));
      if (r1 <= r2 + distance &&
          r2 <= r1 + distance) {
        warn('Unsupported radial gradient.');
      }
    }

    this.extendStart = extendStart;
    this.extendEnd = extendEnd;

    var fnObj = dict.get('Function');
    var fn = PDFFunction.parseArray(xref, fnObj);

    // 10 samples seems good enough for now, but probably won't work
    // if there are sharp color changes. Ideally, we would implement
    // the spec faithfully and add lossless optimizations.
    var diff = t1 - t0;
    var step = diff / 10;

    var colorStops = this.colorStops = [];

    // Protect against bad domains so we don't end up in an infinte loop below.
    if (t0 >= t1 || step <= 0) {
      // Acrobat doesn't seem to handle these cases so we'll ignore for
      // now.
      info('Bad shading domain.');
      return;
    }

    var color = new Float32Array(cs.numComps), ratio = new Float32Array(1);
    var rgbColor;
    for (var i = t0; i <= t1; i += step) {
      ratio[0] = i;
      fn(ratio, 0, color, 0);
      rgbColor = cs.getRgb(color, 0);
      var cssColor = Util.makeCssRgb(rgbColor[0], rgbColor[1], rgbColor[2]);
      colorStops.push([(i - t0) / diff, cssColor]);
    }

    var background = 'transparent';
    if (dict.has('Background')) {
      rgbColor = cs.getRgb(dict.get('Background'), 0);
      background = Util.makeCssRgb(rgbColor[0], rgbColor[1], rgbColor[2]);
    }

    if (!extendStart) {
      // Insert a color stop at the front and offset the first real color stop
      // so it doesn't conflict with the one we insert.
      colorStops.unshift([0, background]);
      colorStops[1][0] += Shadings.SMALL_NUMBER;
    }
    if (!extendEnd) {
      // Same idea as above in extendStart but for the end.
      colorStops[colorStops.length - 1][0] -= Shadings.SMALL_NUMBER;
      colorStops.push([1, background]);
    }

    this.colorStops = colorStops;
  }

  RadialAxial.prototype = {
    getIR: function RadialAxial_getIR() {
      var coordsArr = this.coordsArr;
      var shadingType = this.shadingType;
      var type, p0, p1, r0, r1;
      if (shadingType === ShadingType.AXIAL) {
        p0 = [coordsArr[0], coordsArr[1]];
        p1 = [coordsArr[2], coordsArr[3]];
        r0 = null;
        r1 = null;
        type = 'axial';
      } else if (shadingType === ShadingType.RADIAL) {
        p0 = [coordsArr[0], coordsArr[1]];
        p1 = [coordsArr[3], coordsArr[4]];
        r0 = coordsArr[2];
        r1 = coordsArr[5];
        type = 'radial';
      } else {
        error('getPattern type unknown: ' + shadingType);
      }

      var matrix = this.matrix;
      if (matrix) {
        p0 = Util.applyTransform(p0, matrix);
        p1 = Util.applyTransform(p1, matrix);
        if (shadingType === ShadingType.RADIAL) {
          var scale = Util.singularValueDecompose2dScale(matrix);
          r0 *= scale[0];
          r1 *= scale[1];
        }
      }

      return ['RadialAxial', type, this.colorStops, p0, p1, r0, r1];
    }
  };

  return RadialAxial;
})();

// All mesh shading. For now, they will be presented as set of the triangles
// to be drawn on the canvas and rgb color for each vertex.
Shadings.Mesh = (function MeshClosure() {
  function MeshStreamReader(stream, context) {
    this.stream = stream;
    this.context = context;
    this.buffer = 0;
    this.bufferLength = 0;

    var numComps = context.numComps;
    this.tmpCompsBuf = new Float32Array(numComps);
    var csNumComps = context.colorSpace.numComps;
    this.tmpCsCompsBuf = context.colorFn ? new Float32Array(csNumComps) :
                                           this.tmpCompsBuf;
  }
  MeshStreamReader.prototype = {
    get hasData() {
      if (this.stream.end) {
        return this.stream.pos < this.stream.end;
      }
      if (this.bufferLength > 0) {
        return true;
      }
      var nextByte = this.stream.getByte();
      if (nextByte < 0) {
        return false;
      }
      this.buffer = nextByte;
      this.bufferLength = 8;
      return true;
    },
    readBits: function MeshStreamReader_readBits(n) {
      var buffer = this.buffer;
      var bufferLength = this.bufferLength;
      if (n === 32) {
        if (bufferLength === 0) {
          return ((this.stream.getByte() << 24) |
            (this.stream.getByte() << 16) | (this.stream.getByte() << 8) |
            this.stream.getByte()) >>> 0;
        }
        buffer = (buffer << 24) | (this.stream.getByte() << 16) |
          (this.stream.getByte() << 8) | this.stream.getByte();
        var nextByte = this.stream.getByte();
        this.buffer = nextByte & ((1 << bufferLength) - 1);
        return ((buffer << (8 - bufferLength)) |
          ((nextByte & 0xFF) >> bufferLength)) >>> 0;
      }
      if (n === 8 && bufferLength === 0) {
        return this.stream.getByte();
      }
      while (bufferLength < n) {
        buffer = (buffer << 8) | this.stream.getByte();
        bufferLength += 8;
      }
      bufferLength -= n;
      this.bufferLength = bufferLength;
      this.buffer = buffer & ((1 << bufferLength) - 1);
      return buffer >> bufferLength;
    },
    align: function MeshStreamReader_align() {
      this.buffer = 0;
      this.bufferLength = 0;
    },
    readFlag: function MeshStreamReader_readFlag() {
      return this.readBits(this.context.bitsPerFlag);
    },
    readCoordinate: function MeshStreamReader_readCoordinate() {
      var bitsPerCoordinate = this.context.bitsPerCoordinate;
      var xi = this.readBits(bitsPerCoordinate);
      var yi = this.readBits(bitsPerCoordinate);
      var decode = this.context.decode;
      var scale = bitsPerCoordinate < 32 ? 1 / ((1 << bitsPerCoordinate) - 1) :
        2.3283064365386963e-10; // 2 ^ -32
      return [
        xi * scale * (decode[1] - decode[0]) + decode[0],
        yi * scale * (decode[3] - decode[2]) + decode[2]
      ];
    },
    readComponents: function MeshStreamReader_readComponents() {
      var numComps = this.context.numComps;
      var bitsPerComponent = this.context.bitsPerComponent;
      var scale = bitsPerComponent < 32 ? 1 / ((1 << bitsPerComponent) - 1) :
        2.3283064365386963e-10; // 2 ^ -32
      var decode = this.context.decode;
      var components = this.tmpCompsBuf;
      for (var i = 0, j = 4; i < numComps; i++, j += 2) {
        var ci = this.readBits(bitsPerComponent);
        components[i] = ci * scale * (decode[j + 1] - decode[j]) + decode[j];
      }
      var color = this.tmpCsCompsBuf;
      if (this.context.colorFn) {
        this.context.colorFn(components, 0, color, 0);
      }
      return this.context.colorSpace.getRgb(color, 0);
    }
  };

  function decodeType4Shading(mesh, reader) {
    var coords = mesh.coords;
    var colors = mesh.colors;
    var operators = [];
    var ps = []; // not maintaining cs since that will match ps
    var verticesLeft = 0; // assuming we have all data to start a new triangle
    while (reader.hasData) {
      var f = reader.readFlag();
      var coord = reader.readCoordinate();
      var color = reader.readComponents();
      if (verticesLeft === 0) { // ignoring flags if we started a triangle
        assert(0 <= f && f <= 2, 'Unknown type4 flag');
        switch (f) {
          case 0:
            verticesLeft = 3;
            break;
          case 1:
            ps.push(ps[ps.length - 2], ps[ps.length - 1]);
            verticesLeft = 1;
            break;
          case 2:
            ps.push(ps[ps.length - 3], ps[ps.length - 1]);
            verticesLeft = 1;
            break;
        }
        operators.push(f);
      }
      ps.push(coords.length);
      coords.push(coord);
      colors.push(color);
      verticesLeft--;

      reader.align();
    }
    mesh.figures.push({
      type: 'triangles',
      coords: new Int32Array(ps),
      colors: new Int32Array(ps),
    });
  }

  function decodeType5Shading(mesh, reader, verticesPerRow) {
    var coords = mesh.coords;
    var colors = mesh.colors;
    var ps = []; // not maintaining cs since that will match ps
    while (reader.hasData) {
      var coord = reader.readCoordinate();
      var color = reader.readComponents();
      ps.push(coords.length);
      coords.push(coord);
      colors.push(color);
    }
    mesh.figures.push({
      type: 'lattice',
      coords: new Int32Array(ps),
      colors: new Int32Array(ps),
      verticesPerRow: verticesPerRow
    });
  }

  var MIN_SPLIT_PATCH_CHUNKS_AMOUNT = 3;
  var MAX_SPLIT_PATCH_CHUNKS_AMOUNT = 20;

  var TRIANGLE_DENSITY = 20; // count of triangles per entire mesh bounds

  var getB = (function getBClosure() {
    function buildB(count) {
      var lut = [];
      for (var i = 0; i <= count; i++) {
        var t = i / count, t_ = 1 - t;
        lut.push(new Float32Array([t_ * t_ * t_, 3 * t * t_ * t_,
          3 * t * t * t_, t * t * t]));
      }
      return lut;
    }
    var cache = [];
    return function getB(count) {
      if (!cache[count]) {
        cache[count] = buildB(count);
      }
      return cache[count];
    };
  })();

  function buildFigureFromPatch(mesh, index) {
    var figure = mesh.figures[index];
    assert(figure.type === 'patch', 'Unexpected patch mesh figure');

    var coords = mesh.coords, colors = mesh.colors;
    var pi = figure.coords;
    var ci = figure.colors;

    var figureMinX = Math.min(coords[pi[0]][0], coords[pi[3]][0],
                              coords[pi[12]][0], coords[pi[15]][0]);
    var figureMinY = Math.min(coords[pi[0]][1], coords[pi[3]][1],
                              coords[pi[12]][1], coords[pi[15]][1]);
    var figureMaxX = Math.max(coords[pi[0]][0], coords[pi[3]][0],
                              coords[pi[12]][0], coords[pi[15]][0]);
    var figureMaxY = Math.max(coords[pi[0]][1], coords[pi[3]][1],
                              coords[pi[12]][1], coords[pi[15]][1]);
    var splitXBy = Math.ceil((figureMaxX - figureMinX) * TRIANGLE_DENSITY /
                             (mesh.bounds[2] - mesh.bounds[0]));
    splitXBy = Math.max(MIN_SPLIT_PATCH_CHUNKS_AMOUNT,
               Math.min(MAX_SPLIT_PATCH_CHUNKS_AMOUNT, splitXBy));
    var splitYBy = Math.ceil((figureMaxY - figureMinY) * TRIANGLE_DENSITY /
                             (mesh.bounds[3] - mesh.bounds[1]));
    splitYBy = Math.max(MIN_SPLIT_PATCH_CHUNKS_AMOUNT,
               Math.min(MAX_SPLIT_PATCH_CHUNKS_AMOUNT, splitYBy));

    var verticesPerRow = splitXBy + 1;
    var figureCoords = new Int32Array((splitYBy + 1) * verticesPerRow);
    var figureColors = new Int32Array((splitYBy + 1) * verticesPerRow);
    var k = 0;
    var cl = new Uint8Array(3), cr = new Uint8Array(3);
    var c0 = colors[ci[0]], c1 = colors[ci[1]],
      c2 = colors[ci[2]], c3 = colors[ci[3]];
    var bRow = getB(splitYBy), bCol = getB(splitXBy);
    for (var row = 0; row <= splitYBy; row++) {
      cl[0] = ((c0[0] * (splitYBy - row) + c2[0] * row) / splitYBy) | 0;
      cl[1] = ((c0[1] * (splitYBy - row) + c2[1] * row) / splitYBy) | 0;
      cl[2] = ((c0[2] * (splitYBy - row) + c2[2] * row) / splitYBy) | 0;

      cr[0] = ((c1[0] * (splitYBy - row) + c3[0] * row) / splitYBy) | 0;
      cr[1] = ((c1[1] * (splitYBy - row) + c3[1] * row) / splitYBy) | 0;
      cr[2] = ((c1[2] * (splitYBy - row) + c3[2] * row) / splitYBy) | 0;

      for (var col = 0; col <= splitXBy; col++, k++) {
        if ((row === 0 || row === splitYBy) &&
            (col === 0 || col === splitXBy)) {
          continue;
        }
        var x = 0, y = 0;
        var q = 0;
        for (var i = 0; i <= 3; i++) {
          for (var j = 0; j <= 3; j++, q++) {
            var m = bRow[row][i] * bCol[col][j];
            x += coords[pi[q]][0] * m;
            y += coords[pi[q]][1] * m;
          }
        }
        figureCoords[k] = coords.length;
        coords.push([x, y]);
        figureColors[k] = colors.length;
        var newColor = new Uint8Array(3);
        newColor[0] = ((cl[0] * (splitXBy - col) + cr[0] * col) / splitXBy) | 0;
        newColor[1] = ((cl[1] * (splitXBy - col) + cr[1] * col) / splitXBy) | 0;
        newColor[2] = ((cl[2] * (splitXBy - col) + cr[2] * col) / splitXBy) | 0;
        colors.push(newColor);
      }
    }
    figureCoords[0] = pi[0];
    figureColors[0] = ci[0];
    figureCoords[splitXBy] = pi[3];
    figureColors[splitXBy] = ci[1];
    figureCoords[verticesPerRow * splitYBy] = pi[12];
    figureColors[verticesPerRow * splitYBy] = ci[2];
    figureCoords[verticesPerRow * splitYBy + splitXBy] = pi[15];
    figureColors[verticesPerRow * splitYBy + splitXBy] = ci[3];

    mesh.figures[index] = {
      type: 'lattice',
      coords: figureCoords,
      colors: figureColors,
      verticesPerRow: verticesPerRow
    };
  }

  function decodeType6Shading(mesh, reader) {
    // A special case of Type 7. The p11, p12, p21, p22 automatically filled
    var coords = mesh.coords;
    var colors = mesh.colors;
    var ps = new Int32Array(16); // p00, p10, ..., p30, p01, ..., p33
    var cs = new Int32Array(4); // c00, c30, c03, c33
    while (reader.hasData) {
      var f = reader.readFlag();
      assert(0 <= f && f <= 3, 'Unknown type6 flag');
      var i, ii;
      var pi = coords.length;
      for (i = 0, ii = (f !== 0 ? 8 : 12); i < ii; i++) {
        coords.push(reader.readCoordinate());
      }
      var ci = colors.length;
      for (i = 0, ii = (f !== 0 ? 2 : 4); i < ii; i++) {
        colors.push(reader.readComponents());
      }
      var tmp1, tmp2, tmp3, tmp4;
      switch (f) {
        case 0:
          ps[12] = pi + 3; ps[13] = pi + 4;  ps[14] = pi + 5;  ps[15] = pi + 6;
          ps[ 8] = pi + 2; /* values for 5, 6, 9, 10 are    */ ps[11] = pi + 7;
          ps[ 4] = pi + 1; /* calculated below              */ ps[ 7] = pi + 8;
          ps[ 0] = pi;     ps[ 1] = pi + 11; ps[ 2] = pi + 10; ps[ 3] = pi + 9;
          cs[2] = ci + 1; cs[3] = ci + 2;
          cs[0] = ci;     cs[1] = ci + 3;
          break;
        case 1:
          tmp1 = ps[12]; tmp2 = ps[13]; tmp3 = ps[14]; tmp4 = ps[15];
          ps[12] = tmp4; ps[13] = pi + 0;  ps[14] = pi + 1;  ps[15] = pi + 2;
          ps[ 8] = tmp3; /* values for 5, 6, 9, 10 are    */ ps[11] = pi + 3;
          ps[ 4] = tmp2; /* calculated below              */ ps[ 7] = pi + 4;
          ps[ 0] = tmp1; ps[ 1] = pi + 7;   ps[ 2] = pi + 6; ps[ 3] = pi + 5;
          tmp1 = cs[2]; tmp2 = cs[3];
          cs[2] = tmp2;   cs[3] = ci;
          cs[0] = tmp1;   cs[1] = ci + 1;
          break;
        case 2:
          tmp1 = ps[15];
          tmp2 = ps[11];
          ps[12] = ps[3];  ps[13] = pi + 0; ps[14] = pi + 1;   ps[15] = pi + 2;
          ps[ 8] = ps[7];  /* values for 5, 6, 9, 10 are    */ ps[11] = pi + 3;
          ps[ 4] = tmp2;   /* calculated below              */ ps[ 7] = pi + 4;
          ps[ 0] = tmp1;  ps[ 1] = pi + 7;   ps[ 2] = pi + 6;  ps[ 3] = pi + 5;
          tmp1 = cs[3];
          cs[2] = cs[1]; cs[3] = ci;
          cs[0] = tmp1;  cs[1] = ci + 1;
          break;
        case 3:
          ps[12] = ps[0];  ps[13] = pi + 0;   ps[14] = pi + 1; ps[15] = pi + 2;
          ps[ 8] = ps[1];  /* values for 5, 6, 9, 10 are    */ ps[11] = pi + 3;
          ps[ 4] = ps[2];  /* calculated below              */ ps[ 7] = pi + 4;
          ps[ 0] = ps[3];  ps[ 1] = pi + 7;   ps[ 2] = pi + 6; ps[ 3] = pi + 5;
          cs[2] = cs[0]; cs[3] = ci;
          cs[0] = cs[1]; cs[1] = ci + 1;
          break;
      }
      // set p11, p12, p21, p22
      ps[5] = coords.length;
      coords.push([
        (-4 * coords[ps[0]][0] - coords[ps[15]][0] +
          6 * (coords[ps[4]][0] + coords[ps[1]][0]) -
          2 * (coords[ps[12]][0] + coords[ps[3]][0]) +
          3 * (coords[ps[13]][0] + coords[ps[7]][0])) / 9,
        (-4 * coords[ps[0]][1] - coords[ps[15]][1] +
          6 * (coords[ps[4]][1] + coords[ps[1]][1]) -
          2 * (coords[ps[12]][1] + coords[ps[3]][1]) +
          3 * (coords[ps[13]][1] + coords[ps[7]][1])) / 9
      ]);
      ps[6] = coords.length;
      coords.push([
        (-4 * coords[ps[3]][0] - coords[ps[12]][0] +
          6 * (coords[ps[2]][0] + coords[ps[7]][0]) -
          2 * (coords[ps[0]][0] + coords[ps[15]][0]) +
          3 * (coords[ps[4]][0] + coords[ps[14]][0])) / 9,
        (-4 * coords[ps[3]][1] - coords[ps[12]][1] +
          6 * (coords[ps[2]][1] + coords[ps[7]][1]) -
          2 * (coords[ps[0]][1] + coords[ps[15]][1]) +
          3 * (coords[ps[4]][1] + coords[ps[14]][1])) / 9
      ]);
      ps[9] = coords.length;
      coords.push([
        (-4 * coords[ps[12]][0] - coords[ps[3]][0] +
          6 * (coords[ps[8]][0] + coords[ps[13]][0]) -
          2 * (coords[ps[0]][0] + coords[ps[15]][0]) +
          3 * (coords[ps[11]][0] + coords[ps[1]][0])) / 9,
        (-4 * coords[ps[12]][1] - coords[ps[3]][1] +
          6 * (coords[ps[8]][1] + coords[ps[13]][1]) -
          2 * (coords[ps[0]][1] + coords[ps[15]][1]) +
          3 * (coords[ps[11]][1] + coords[ps[1]][1])) / 9
      ]);
      ps[10] = coords.length;
      coords.push([
        (-4 * coords[ps[15]][0] - coords[ps[0]][0] +
          6 * (coords[ps[11]][0] + coords[ps[14]][0]) -
          2 * (coords[ps[12]][0] + coords[ps[3]][0]) +
          3 * (coords[ps[2]][0] + coords[ps[8]][0])) / 9,
        (-4 * coords[ps[15]][1] - coords[ps[0]][1] +
          6 * (coords[ps[11]][1] + coords[ps[14]][1]) -
          2 * (coords[ps[12]][1] + coords[ps[3]][1]) +
          3 * (coords[ps[2]][1] + coords[ps[8]][1])) / 9
      ]);
      mesh.figures.push({
        type: 'patch',
        coords: new Int32Array(ps), // making copies of ps and cs
        colors: new Int32Array(cs)
      });
    }
  }

  function decodeType7Shading(mesh, reader) {
    var coords = mesh.coords;
    var colors = mesh.colors;
    var ps = new Int32Array(16); // p00, p10, ..., p30, p01, ..., p33
    var cs = new Int32Array(4); // c00, c30, c03, c33
    while (reader.hasData) {
      var f = reader.readFlag();
      assert(0 <= f && f <= 3, 'Unknown type7 flag');
      var i, ii;
      var pi = coords.length;
      for (i = 0, ii = (f !== 0 ? 12 : 16); i < ii; i++) {
        coords.push(reader.readCoordinate());
      }
      var ci = colors.length;
      for (i = 0, ii = (f !== 0 ? 2 : 4); i < ii; i++) {
        colors.push(reader.readComponents());
      }
      var tmp1, tmp2, tmp3, tmp4;
      switch (f) {
        case 0:
          ps[12] = pi + 3; ps[13] = pi + 4;  ps[14] = pi + 5;  ps[15] = pi + 6;
          ps[ 8] = pi + 2; ps[ 9] = pi + 13; ps[10] = pi + 14; ps[11] = pi + 7;
          ps[ 4] = pi + 1; ps[ 5] = pi + 12; ps[ 6] = pi + 15; ps[ 7] = pi + 8;
          ps[ 0] = pi;     ps[ 1] = pi + 11; ps[ 2] = pi + 10; ps[ 3] = pi + 9;
          cs[2] = ci + 1; cs[3] = ci + 2;
          cs[0] = ci;     cs[1] = ci + 3;
          break;
        case 1:
          tmp1 = ps[12]; tmp2 = ps[13]; tmp3 = ps[14]; tmp4 = ps[15];
          ps[12] = tmp4;   ps[13] = pi + 0;  ps[14] = pi + 1;  ps[15] = pi + 2;
          ps[ 8] = tmp3;   ps[ 9] = pi + 9;  ps[10] = pi + 10; ps[11] = pi + 3;
          ps[ 4] = tmp2;   ps[ 5] = pi + 8;  ps[ 6] = pi + 11; ps[ 7] = pi + 4;
          ps[ 0] = tmp1;   ps[ 1] = pi + 7;  ps[ 2] = pi + 6;  ps[ 3] = pi + 5;
          tmp1 = cs[2]; tmp2 = cs[3];
          cs[2] = tmp2;   cs[3] = ci;
          cs[0] = tmp1;   cs[1] = ci + 1;
          break;
        case 2:
          tmp1 = ps[15];
          tmp2 = ps[11];
          ps[12] = ps[3]; ps[13] = pi + 0; ps[14] = pi + 1;  ps[15] = pi + 2;
          ps[ 8] = ps[7]; ps[ 9] = pi + 9; ps[10] = pi + 10; ps[11] = pi + 3;
          ps[ 4] = tmp2;  ps[ 5] = pi + 8; ps[ 6] = pi + 11; ps[ 7] = pi + 4;
          ps[ 0] = tmp1;  ps[ 1] = pi + 7; ps[ 2] = pi + 6;  ps[ 3] = pi + 5;
          tmp1 = cs[3];
          cs[2] = cs[1]; cs[3] = ci;
          cs[0] = tmp1;  cs[1] = ci + 1;
          break;
        case 3:
          ps[12] = ps[0];  ps[13] = pi + 0;  ps[14] = pi + 1;  ps[15] = pi + 2;
          ps[ 8] = ps[1];  ps[ 9] = pi + 9;  ps[10] = pi + 10; ps[11] = pi + 3;
          ps[ 4] = ps[2];  ps[ 5] = pi + 8;  ps[ 6] = pi + 11; ps[ 7] = pi + 4;
          ps[ 0] = ps[3];  ps[ 1] = pi + 7;  ps[ 2] = pi + 6;  ps[ 3] = pi + 5;
          cs[2] = cs[0]; cs[3] = ci;
          cs[0] = cs[1]; cs[1] = ci + 1;
          break;
      }
      mesh.figures.push({
        type: 'patch',
        coords: new Int32Array(ps), // making copies of ps and cs
        colors: new Int32Array(cs)
      });
    }
  }

  function updateBounds(mesh) {
    var minX = mesh.coords[0][0], minY = mesh.coords[0][1],
      maxX = minX, maxY = minY;
    for (var i = 1, ii = mesh.coords.length; i < ii; i++) {
      var x = mesh.coords[i][0], y = mesh.coords[i][1];
      minX = minX > x ? x : minX;
      minY = minY > y ? y : minY;
      maxX = maxX < x ? x : maxX;
      maxY = maxY < y ? y : maxY;
    }
    mesh.bounds = [minX, minY, maxX, maxY];
  }

  function packData(mesh) {
    var i, ii, j, jj;

    var coords = mesh.coords;
    var coordsPacked = new Float32Array(coords.length * 2);
    for (i = 0, j = 0, ii = coords.length; i < ii; i++) {
      var xy = coords[i];
      coordsPacked[j++] = xy[0];
      coordsPacked[j++] = xy[1];
    }
    mesh.coords = coordsPacked;

    var colors = mesh.colors;
    var colorsPacked = new Uint8Array(colors.length * 3);
    for (i = 0, j = 0, ii = colors.length; i < ii; i++) {
      var c = colors[i];
      colorsPacked[j++] = c[0];
      colorsPacked[j++] = c[1];
      colorsPacked[j++] = c[2];
    }
    mesh.colors = colorsPacked;

    var figures = mesh.figures;
    for (i = 0, ii = figures.length; i < ii; i++) {
      var figure = figures[i], ps = figure.coords, cs = figure.colors;
      for (j = 0, jj = ps.length; j < jj; j++) {
        ps[j] *= 2;
        cs[j] *= 3;
      }
    }
  }

  function Mesh(stream, matrix, xref, res) {
    assert(isStream(stream), 'Mesh data is not a stream');
    var dict = stream.dict;
    this.matrix = matrix;
    this.shadingType = dict.get('ShadingType');
    this.type = 'Pattern';
    this.bbox = dict.getArray('BBox');
    var cs = dict.get('ColorSpace', 'CS');
    cs = ColorSpace.parse(cs, xref, res);
    this.cs = cs;
    this.background = dict.has('Background') ?
      cs.getRgb(dict.get('Background'), 0) : null;

    var fnObj = dict.get('Function');
    var fn = fnObj ? PDFFunction.parseArray(xref, fnObj) : null;

    this.coords = [];
    this.colors = [];
    this.figures = [];

    var decodeContext = {
      bitsPerCoordinate: dict.get('BitsPerCoordinate'),
      bitsPerComponent: dict.get('BitsPerComponent'),
      bitsPerFlag: dict.get('BitsPerFlag'),
      decode: dict.getArray('Decode'),
      colorFn: fn,
      colorSpace: cs,
      numComps: fn ? 1 : cs.numComps
    };
    var reader = new MeshStreamReader(stream, decodeContext);

    var patchMesh = false;
    switch (this.shadingType) {
      case ShadingType.FREE_FORM_MESH:
        decodeType4Shading(this, reader);
        break;
      case ShadingType.LATTICE_FORM_MESH:
        var verticesPerRow = dict.get('VerticesPerRow') | 0;
        assert(verticesPerRow >= 2, 'Invalid VerticesPerRow');
        decodeType5Shading(this, reader, verticesPerRow);
        break;
      case ShadingType.COONS_PATCH_MESH:
        decodeType6Shading(this, reader);
        patchMesh = true;
        break;
      case ShadingType.TENSOR_PATCH_MESH:
        decodeType7Shading(this, reader);
        patchMesh = true;
        break;
      default:
        error('Unsupported mesh type.');
        break;
    }

    if (patchMesh) {
      // dirty bounds calculation for determining, how dense shall be triangles
      updateBounds(this);
      for (var i = 0, ii = this.figures.length; i < ii; i++) {
        buildFigureFromPatch(this, i);
      }
    }
    // calculate bounds
    updateBounds(this);

    packData(this);
  }

  Mesh.prototype = {
    getIR: function Mesh_getIR() {
      return ['Mesh', this.shadingType, this.coords, this.colors, this.figures,
        this.bounds, this.matrix, this.bbox, this.background];
    }
  };

  return Mesh;
})();

Shadings.Dummy = (function DummyClosure() {
  function Dummy() {
    this.type = 'Pattern';
  }

  Dummy.prototype = {
    getIR: function Dummy_getIR() {
      return ['Dummy'];
    }
  };
  return Dummy;
})();

function getTilingPatternIR(operatorList, dict, args) {
  var matrix = dict.getArray('Matrix');
  var bbox = dict.getArray('BBox');
  var xstep = dict.get('XStep');
  var ystep = dict.get('YStep');
  var paintType = dict.get('PaintType');
  var tilingType = dict.get('TilingType');

  return [
    'TilingPattern', args, operatorList, matrix, bbox, xstep, ystep,
    paintType, tilingType
  ];
}

exports.Pattern = Pattern;
exports.getTilingPatternIR = getTilingPatternIR;
}));